
Int. J. of Advanced Networking and Applications 282
Volume: 01, Issue: 05, Pages: 282-289 (2010)

 Customized PKI for SCADA System

Anupam Saxena
Centre for Development of Advanced Computing, Mumbai, India

Email: anupam@cdacmumbai.in
Om Pal

Centre for Development of Advanced Computing, Mumbai, India
Email:ompal@cdacmumbai.in

Zia Saquib
Centre for Development of Advanced Computing, Mumbai, India

Email: saquib@cdacmumbai.in
Dhiren Patel

Indian Institute of Technology Gandhinagar, Ahmedabad, India
Email: dhiren@iitgn.ac.in

---ABSTRACT---
Security of SCADA (supervisory Control and Data Acquisition) has become a challenging issue today because of its
connectivity with the outside world and remote access to the system. One major challenge in the SCADA systems is securing
the data over the communication channel. PKI (public key infrastructure) is a well known framework for securing the
communication. In SCADA system, due to limited bandwidth and rare communications among some RTUs (Remote Terminal
Units), there is a need of customization of general PKI which can reduce the openness of Public Key, frequent transfer of
certificates and reduction in DOS (Denial of Service) attacks at MTUs (Master Terminal Units) and RTUs. This paper
intends to address the issues of securing data over communication channel in the constrained environment and presents
the novel solutions pivoted on key distribution and key management schemes. This paper also presents a set of innovative
methods of multicast and broadcast of messages in SCADA system.

Keywords: Broadcasting, Key Distribution and Management, Multicasting, Public Key Infrastructure, SCADA security

--
Date of Submission: February 01, 2010 Date of Acceptance: March 29, 2010

--

I. INTRODUCTION

upervisory Control and Data Acquisition (SCADA)
systems provide means for management, supervisory

control, and monitoring of process control and automation
systems via collecting and analysing the real time data.
Initially these systems were not intended to operate within
the enterprise environment, this lead to inability within
SCADA components to deal with the exposure to viruses,
worms, malware etc. that are commonplace today within the
enterprise network.
Due to connectivity of SCADA systems with Internet and
the increased risk of cyber attacks, security of such systems
have become a challenging issue today. Technology become
vulnerable to attacks and technological vulnerability can
cause a sever damage on critical infrastructures like electric
power grid, oil gas plant and water management system.
Protection of such Internet connected SCADA systems from
intruders is a new challenge for researchers and therefore, it
necessary to apply information security principles and
processes to these systems.
SCADA system consists of a human-machine interface
(HMI), a supervisory system (controller or MTU), remote
terminal units (RTUs), programmable logic controllers (PLCs)
and a communication infrastructure connecting the
supervisory system to the RTUs.

As the SCADA industry developed, vendors began to
adopt open standards and the total number of SCADA
protocols commonly in use was reduced to smaller number

of protocols that were popular and were being promoted by
industry, including MODBUS, Ethernet/IP, PROFIBUS,
ControlNet, InfiNET, Fieldbus, Distributed Network
Protocol (DNP), Inter-Control Center Communications
Protocol (ICCP), Telecontrol Application Service Element
(TASE) etc. The most widely used communication
protocols in SCADA system are DNP3 (Distributed

S

Fig. 1. SCADA System Architecture

Int. J. of Advanced Networking and Applications 283
Volume: 01, Issue: 05, Pages: 282-289 (2010)

Network Protocol version 3.0), IEC 62351 and Modbus. In
the beginning due to isolation of SCADA system from rest
of the world, cyber security was not an issue when these
protocols were designed. As the system is becoming more
interconnected to the outside world, the necessity of
securing the system is increased.

Cryptographic techniques are widely used for providing
many security features like higher security, reliability, and
availability of control systems etc. to the SCADA systems.
There is a need of establishment of secure keys before
application of cryptographic techniques. In this paper first
we discuss key distribution and key management issues and
then we present our PKI based approach for securing the
SCADA system in an efficient way with the facility of
message broadcast and multicast as an additional feature;
scheme is designed such that it also fulfils the essential
requirement of availability along with integrity in the SCADA
systems.
In next section, we discuss key challenges and related work,
In Section 3 we present our proposed (CPKI) key distribution
and key management technique with Conclusions in Section
4 and References at the end.

II. KEY CHALLENGES AND RELATED WORK

Along with the connectivity of SCADA system to the
Internet, many security threats have emerged, like
unauthorized access of devices, capturing and decoding
network packets and malicious packet injection in the
network.
For securing the SCADA system from these threats, there
are certain security requirements, which can be classified as:

1. Authentication: It is very important to ensure that the
origin of an object is what it claims to be.
2. Integrity: The manipulation of messages between nodes
and insertion of new nodes can be hazardous. A malicious
attacker could cause physical damage if they have the ability
to alter or create messages.
3. Confidentiality: Ensuring that no one can read the
message except the intended receiver.
4. Availability of resources: Insuring that resources are
available for legitimate users. Insuring that the information is
there when needed by those having authorization to access
or view it.

For securing the system, these challenges along with
installation and configuration limitations of the system need
to be considered. Ludovic Piètre-Cambacédès[3] has pointed
out the some constraints of SCADA system:

1. Limited computational capacity: The most of the RTUs
are having low computational capabilities.
2. Limited Space Capacity: Memory available in the most of
the RTU is quite low.
3. Real-time processing: If transmission and processing of
data in SCADA systems not become timely, then it may
cause of latency problems.
4. Key freshness: In the absence of key freshness entities
would keep re using an ‘old’ key for longer time, which might

have been compromised, so there is a need of key freshness
for eliminating the possibility of such new security hole.
5. Small number of messages: Due to low bandwidth,
number of messages exchanged between nodes need to be
minimum and also length of messages need to be also small.
6. Multicasting: Though multicasting is not an essential
requirement for SCADA system, but it might be required in
certain cases where the facility of common message
announcement to a selected group of RTUs is required.
7. Broadcasting: There should be facility of common
message announcement to all devices

There is a need to keep these constraints in mind before
building a security mechanism for the system. Many efforts
have been made in the area of key distribution and key
management for securing the System but still there is a scope
for improvements.
 Sandia National Laboratories [1] proposed a
cryptographic key management and Key Establishment
approach for SCADA (SKE) in 2002. This technique, divides
the communication into two categories: first is 'controller to
subordinate (C-S) communication' and second is
'subordinate to subordinate (S-S) communication'. The C-S is
a master-slave kind of communication and is ideal for
symmetric key technique. The C-C is a peer-to-peer
communication and it can use asymmetric key approach. In
C-S communication, each controller has a Long Term Key
(LTK) shared with its subordinate. The controller also has its
own General Seed Key (GSK), which it sends to each of its
subordinates. The General Key (GK) is a 128 bit hash of GSK.
For communication, the sender obtains a Session Key (SK)
from GK. And this SK is used for encryption/decryption. All
keys used are of 128 bit in length.
 Information Security Institute, Queensland University of
Technology, Australia [2] proposed Key Management
Architecture for SCADA systems (SKMA). In this scheme a
new entity 'Key Distribution Center (KDC)' came into picture,
which is used to maintain long term keys for every node.
Whenever a new node joins the system, a node-KDC key is
manually installed in it. When two nodes want to
communicate then with help of node-KDC key, a long term
'node-node key' is generated. Again using the node-node
key, a session key is generated for data communication.
 In 2002, Mingyan Li [5] proposed a key management
approach with multicast and broadcast facility. This
approach specifies the shared keys to be stored in the
database of MTU (2n -1 keys) and RTU (1+log 2n keys) and
these keys are used at run time, where 'n' is number of RTUs.
However, this approach provides multicasting in a limited
fashion.
 Donghyun Choi[6] also proposed a multicast and
broadcast scheme with additional computation at run time at
MTU side, by doing so the number of keys at MTU is 'n-1'
lesser than Mingyan approach. Like Mingyan's approach,
this approach also provides multicasting in a limited fashion.

 Simple Public Key Infrastructure (SPKI) was developed
starting in 1995. Simple Distributed Securit y Infrastructure
(SDSI) is a new design for a public-key infrastructure,
designed by Professors Ronald L. Rivest and Butler
Lampson of MIT's Laboratory for Computer Science,

Int. J. of Advanced Networking and Applications 284
Volume: 01, Issue: 05, Pages: 282-289 (2010)

members of LCS's Cryptography and Information Security
research group [18]. The SPKI/SDSI facilitates to build a
secure distributed computing system which may be scalable.
SPKI/SDSI builds public keys as principals and each public
key as a certificate authority itself [17]. Each principal can
issue certificates. SPKI/SDSI provides two types of
certificates; these are “name certificates” and “authorization
certificates”. Name certificate defines a local name in the
local name space of certificate issuer. Authorization
certificate grants authorization to the subject of the
certificate. A single certificate cannot define both i.e. a name
and granting an authorization; so a certificate is either a
name certificate or an authorization certificate, but can not be
both.

 SCADA system is an interconnected infrastructure,
where smooth, reliable and continuous operations are
desired. Protecting such infrastructures includes a number of
challenges, such as secure interaction among nodes,
resilience and robustness of entire system. The Wireless
Sensor Networks (WSN) have intelligent distributed control
capabilities, and the capability to work under severe
conditions, so some of the schemes of this area may be
useful for securing SCADA systems, as µPKI.

 In the paper “Lightweight PKI for WSN µPKI”, Benamar
Kadri , Mohammed Feham , and Abdallah M’hamed
proposed a lightweight implementation of Public Key
Infrastructure (PKI) [16]. Their proposed protocol called
µPKI uses public key e ncryption only for some specific tasks
as session key setup between the base station and sensors
giving the network an acceptable threshold of confidentiality
and authentication. µPKI only implements a subset of a PKI
services . Here all sensors are connected to a Base station,
which is having more computational and energy power
compared to sensors; and each sensor is capable to use both
symmetric and asymmetric encryption. The public key of the
base station is installed at sensor node with the help of an
off-line dealer. It ensures that only legitimate sensors can
authenticate base station trough its public key. The public
key is used to authenticate the base station by the sensors
in the network, and private key is used by the base station to
the decrypt data sent by sensors, which ensures
confidentiality. For secure end to end transmission between
nodes and Base station, µPKI uses two types of
handshakes. The first handshake is between the base station
and sensors where a sensor generates a random key,
encrypts it with the public key of the base station and sends
to Base station, by decrypting it , the base station saves the
session key in a global table where are saved all the session
keys corresponding to each sensor in the network. The
second handshake is for securing sensor to sensor
communication; where one of the two sensors sends a
request (which contains the identifier of the corresponding
node) to the base station to establish a secure tunnel with
the other sensor. When base station receives this re quest, it
decrypts this and generates a random key, then encrypts a
copy of this key for each sensor using the corresponding
session keys, and sends it to each sensor [16].

In this paper, we concentrate on accomplishment of
fundamental security goals of communications, where secure
communication is needed with limited resources, along with
broadcast and multicast capabilities. We are using the PKI
approach in a customized manner, which basically reduces
the openness of Public Key in such a way that it provides
broadcasting and multicasting (for any group of RTUs) in
the limited environment of SCADA system.

III. PROPOSED METHODOLOGY

Our scheme assumes that messaging takes place among
three entities CA (Controlling Authority), MTU and RTU.
Scheme uses a high comp uting capable entity (CA) as an
additional element to provide security in SCADA systems.
Scheme uses asymmetric key approach with putting
restriction on accessibility of each key. Scheme uses 'Key

and CounterKey pair'. Though these keys are analogues to
Private-Public keys ('Key' corresponds to Private Key, and
'CounterKey' corresponds to Public key), but are not same in
the true sense, because in the scheme'CounterKeys' are not
publicly accessible to all.
In actual SCADA network, there are Sub-MTUs
associated to MTU which takes care of a particular section
of RTUs.
For showing the clear working of our scheme in a simple
way, we are showing MTU in place of Sub-MTU, which
takes care of their corresponding subsection of RTUs with
the help of CA of that subsection.
In turn, these various subsections communicate with each
other with the help of their representative CAs which can
communicate with each other by establishment of trust
among peer CAs.
Scheme assumes that for a sub section, there is one MTU
(with moderate computational power), one CA (with very
high computational power) and n number of RTUs (with
low computational power). MTU and RTUs are attached to
CA.
Initially long term keys are stored manually at each node,
'n+1' unique keys stored at CA (corresponding to each
MTU/RTU), and one at each RTU/MTU which belongs to
that particular RTU/MTU.
RTU Ri has key Li where i = 1,2,...n and and similarly the
MTU has key, named “Ln+1”. The CA passes Key and
CounterKeys (K and CK) pair to corresponding RTUs and to

Fig. 2. SCADA System with CA

Int. J. of Advanced Networking and Applications 285
Volume: 01, Issue: 05, Pages: 282-289 (2010)

MTU by using the pre shared-keys (Li, where i = 1,2,...'n+1').
Also it passes MTU's CounterKey (CKMTU) to each RTU,
and CA's CounterKey (CKCA) to each RTU and to MTU.
For maintaining key freshness, there is a provision of re-
distribution of “Key-CounterKey pair” after certain period of
time using long term keys, and also these long term keys

would be replaced manually after a long time period. This
fixed time is can be adjusted depending on the requirement
of system.
Each node (RTU/MTU) maintains a database of counter keys
of other nodes to which it wants to communicate and if
counter key is not available in it's database then it requests
to CA for obtaining required CounterKey before initiation of
communication. All keys and CounterKeys are confidential,
any node can request to CA for getting CounterKey of other
node only if it wants to communicate with that node. After
initial communication both party (sender and receiver) store
the CounterKeys of each other in their database for future
use.
In general CA authenticates any node on the network by
issuing certificate to that node but in this case extra
computational overhead of certificate might be an issue for
some RTUs because of their low processing power. In such
cases we have two options, first one is to reduce certificate
as much as possible by removing unnecessary extra fields
from it [3], and second is to replace certificate value with a
single unique value like “MAC Address” of the
corresponding entity.
In proposed scheme, node encrypts hash of its own MAC
address with its own key and forwards this value to other
node, to prove its authenticity.
For load balancing, and to avoid CA to become a single
point of failure, scheme also recommends the deployment of
distributed CA.
A. Proposed scheme categorizes the communication into
three categories as follows

1. RTU to RTU communication.
2. MTU to RTU communication.
3. RTU to MTU communication.

1. RTU to RTU communication

In rare cases, an RTU may be interested in communicate to
another RTU, in this case RTU will not store CounterKeys
of all RTUs but it will only store CounterKey of other RTU at
run time if it is needed, which it takes from CA.

If RTU A wants to communicate with RTU B then it checks
the CounterKey of RTU B in its database if it is there then
RTU A encrypts the message with CounterKey of RTU B
and sends to RTU B. If CounterKey of RTU B is not
available in database of RTU A then it calculates Hash of its
own MAC address, signs it by its own Key, and then
encrypts the resulting block (along with address of RTU B)
by CA's CounterKey, and sends to CA. When CA gets the
request, it decrypts it by its own Key, and then checks the
signature of RTU A with the help of Hash Function and by
using CounterKey of RTU A. After checking the validity of
the RTU B, the CA prepares a response. If both RTUs are

genuine, then CA sends a response (which contains
CounterKey of corresponding RTU B) to RTU A by signing
the Hash of MAC address of CA by its own key and
encrypting the resulting block by the CounterKey of RTU A.

After getting the response of CA, RTU A decrypts the Block

by its own Key and after decrypting hash value by
CounterKey of CA, compares hash of MAC address of CA
with received hash value from CA, if values match, then RTU
A stores the CounterKey of RTU B in its database.

Fig. 3. Initial Key Setup

Fig. 4. RTU to RTU Communication

Table 1. CounterKey storage in databases of
communicating RTUs

States RTU A RTU B Encryption

Initial State CKMTU,
CKCA,
CKA

CKMTU
CKCA,
CKB

State after
Message 1

“ “ Message
encrypted
with CKCA

State after
Message 2

CKMTU,
CKCA,
CKA,
CKB

“ Message
encrypted
with CKA

State after
Message 3

“ “ Message
encrypted
with CKCA

State after
Message 4

“ “ Message
encrypted
with CKCA

State after
Message 5

“ CKMTU,
CKCA,
CKB,
CKA

Message
encrypted
with CKB

Int. J. of Advanced Networking and Applications 286
Volume: 01, Issue: 05, Pages: 282-289 (2010)

Now RTU A sends message to RTU B by encrypting the
message with CounterKey of RTU B. After receiving it, the
RTU B starts communication if it has the CounterKey of RTU
A in its database, otherwise it does not respond.
If the RTU A does not get reply from RTU B then it waits for
a fixed time (this time duration may vary from system to
system and will depend on requirements), after that it sends
a communication initiation request to RTU B, by calculating
hash of its own MAC address, signing it by its Key, and
then encrypting the resulting block (along with address of
RTU A) by CA's CounterKey, and sends to RTU B. After
receiving the request from RTU A, RTU B passes this
request to CA. When CA gets the request, it decrypts it by
its own Key, and then checks the signature of RTU A with
the help of Hash function and by using CounterKey of RTU
A. After checking the validity of the sender (who initiated
the request), the CA prepares a response. If initial sender A
is genuine, then CA sends a response (which contains
CounterKey of RTU A) to RTU B by signing the hash of
MAC address of CA by its own key and with encrypting the
resulting block by the CounterKey of RTU B.
After getting the response of CA, RTU B decrypts the Block
by its own Key and after decrypting hash value by
CounterKey of CA, compares the hash, if values match then
RTU B stores the CounterKey of RTU A in its database.
Now the communication can start.

2. MTU to RTU communication

When an MTU wants to communicate to an RTU then it
checks the CounterKey of that RTU in its database, if it is
there then MTU encrypts the message with CounterKey of
RTU and sends to RTU. If CounterKey of RTU is not present
there in database of MTU, then it (MTU) calculates Hash of
its own MAC address, signs it by its Key, and then encrypts
the resulting block (along with the address of RTU) by

CounterKey of CA and sends to CA. When CA gets the
request, it decrypts it by its own Key, and then checks the
signature of MTU with the help of Hash Function and by
using CounterKey of MTU.

After checking the validity of the MTU, the CA prepares a
response. If MTU is genuine, then CA sends a response
(which contains CounterKey of corresponding RTU) to
MTU by signing the Hash of MAC address of CA by its

own key and encrypting the resulting block by the
CounterKey of MTU.

After getting the response of CA, MTU decrypts the block
by its own Key and after decrypting hash value by
CounterKey of CA, compares hash of MAC address of CA

with received hash value from CA, if values match, then
MTU stores the CounterKey of RTU in its database and
MTU sends the message to RTU by encrypting the message
with CounterKey of RTU.
Now both the MTU and RTU B contain CounterKeys of
each other in their databases, and they can communicate.

3. RTU to MTU communication

When an RTU wants to communicate to MTU then it sends
a message to MTU, by encrypting it with CounterKey of
MTU (which is known to every RTU). After receiving it, the
MTU starts communication if it has the CounterKey of that
RTU in its database, otherwise it does not respond.

If the RTU does not get reply from MTU then it waits for a
fixed time (this time duration may vary from system to system
and will depend on requirements), after that it sends a
communication initiation request to MTU, by calculating

Table 2 . CounterKey storage in databases of communicating
MTU and RTU

States MTU RTU B Encryption

Initial
state

CKMTU

CKCA
CKMTU

CKCA,
CKB

State after
Message 1

“ “ Message
encrypted
with CKCA

State after
Message 2

CKMTU

CKCA
CKB

“ Message
encrypted
with CKMTU

State after
Message 3

“ “ Message
encrypted
with CKB

Fig. 5. MTU to RTU Communication

Fig. 6. RTU to MTU Communication

Int. J. of Advanced Networking and Applications 287
Volume: 01, Issue: 05, Pages: 282-289 (2010)

hash of its own MAC address, signing it by its Key, and
then encrypting the resulting block (along with the address
of RTU) by CounterKey of CA.

After receiving the request from RTU, MTU passes this
request to CA. When CA gets the request, it decrypts it by
its own Key, and then checks the signature of RTU with the

help of Hash Function and by using CounterKey of
corresponding RTU. After checking the validity of the RTU,
the CA prepares a response. If RTU is genuine, then CA
sends a response (response contains CounterKey of RTU)
to MTU by signing the hash of MAC address of CA by its
own key and then encrypts the resulting block by the
CounterKey of MTU.
After getting the response of CA, MTU decrypts the block
by its own Key and after decrypting hash value by
CounterKey of CA, it compares the hash of MAC address of
CA with received hash address, if values match then MTU
stores the CounterKey of RTU in its database. Now both the
MTU and the RTU are having the CounterKeys of each
other in their databases, and they can communicate.

B. Broadcast and Multicast Support

Proposed scheme also provides support for broadcasting;
though the multicasting is not an essential requirement of
SCADA systems, it provides multicasting as an additional
feature. Its implementation uses specific flag bits.
MTU broadcasts message to all entities by encrypting the
message with its Key and the message can be decrypted at
each entity by using CounterKey of MTU because
CounterKey of MTU is available at each RTU.

When any RTU or MTU wants to multicast a message, then
it sends its multicast initiator request to CA (containing
addresses of the entities, for which multicast is desired), after
encrypting it with CounterKey of CA. CA keeps CounterKey
of every entity (RTUs/MTU) with it. CA fetches the
addresses of end entities (to which multicast is desired) from
the multicast request of RTU/MTU, takes the multicast data
and encrypts it with its own Key and then sends the
resulting block (which contains the address of original

initiator of the multicast) to the fetched addresses along with
the address of original initiator of the multicast.
CounterKey of CA and MTU are available only at genuine
RTUs and these CounterKeys are not open to all, so any
fraud entity can not get CounterKey of CA or MTU hence it
can not decrypt the broadcast/multicast message. For
multicasting, addressing mechanism is used, so scheme
assume that only RTUs decrypt the multicast message
whose addresses are available in address block of message.

In all kind of communications, the communicating entities
specify that whether they are sending a normal message
(which any RTU or MTU sends to either by encrypting the
data with the CounterKey of corresponding entity), or it is
some other kind of message like broadcast/multicast or
request/response.

Normal messages are identified by setting F1 to 0, and flag
bit F2 need not to be checked in this case. For covering other
conditions, it sets flag bit F2 to '0' for Broadcast/Multicast
and '1' for request/response, along with setting F1 to 1

C. Dynamic arranged database for optimal key storage

Due to low memory, MTUs and RTUs can store a limited
number of counter keys in their databases. This limited
storage of keys can cause an extra overhead at run time, if
required key is not available in database of MTU/RTU.
To overcome this problem, scheme uses ‘dynamic arranged
database for optimal key storage’. Each RTU/MTU stores
CounterKey of CA in first row of database and counter key
of MTU in second row of database. Always new Counter
Key will be stored in third row of database and all keys will
shift downward by one row. Key at the bottom row is
removed if database is already full. If any CounterKey is
used by the node from its database then this used key will be
shifted to third row and all CounterKeys (which were above
in database from used counter key) will shifted downward by

Table 3. CounterKey storage in databases of communicating
RTU and MTU

States MTU RTU B Encryption

Initial state CKMTU,
CKCA

CKMTU

CKCA,
CKB

State after
Message 1

“ “ Message
encrypted
with CKCA

State after
Message 2

“ “ “

State after
Message 3

CKMTU,
CKCA,
CKB

“ Message
encrypted
with CKMTU

Table 4. Table of flag bits

F1 F2 Direction Description

0 0 or
1

RTU/MTU
to RTU/MTU

Normal message

1 0 RTU/MTU
to RTU/MTU

Request to start
communication

RTU/MTU
to CA

Request to CA to
fetch CounterKey
of other entity

CA
to RTU/MTU

Response from CA
with CounterKey
of desired entity

1 1 RTU/MTU
to CA

Multicast initiator
request

MTU
to RTU/MTU

Broadcast

CA
to RTU/MTU

Multicast

Int. J. of Advanced Networking and Applications 288
Volume: 01, Issue: 05, Pages: 282-289 (2010)

one row. The place of CounterKeys those are at lower
position from used counter keys will be unchanged.

IV. CONCLUSION

In SCADA system, due to limited bandwidth and rare
communications among some RTUs (Remote Terminal
Units), there is a need of customization of general PKI which
can reduce the openness of Public Key, frequent transfer of
certificates and reduction in DOS (Denial of Service) attacks
at MTUs (Master Terminal Units) and RTUs.
We have discussed various existing issues, challenges, and
schemes on cryptographic key distribution and key
management for SCADA systems. We have devised and
proposed a new scheme emphasizing on key distribution and
key management in constrained environment using the
strength of PKI.
Our attempt is to address the issues of securin g the data
over the communication channel in the constrained
environment and presented a novel solution pivoted on key

distribution and key management schemes. It supports
broadcasting of messages and also provides multicasting as
an additional feature for SCADA system.

REFERENCES

[1] C. L. Beaver, D.R. Gallup, W. D. NeuMann, and M.D.
Torgerson “Key Management for SCADA (SKE)”, printed at
Sandia Lab March 2002.

[2] Robert Dawson, Colin Boyd, Ed Dawson, Juan Manuel,
* RQ]�?DOH]�1 LHWR�³6. 0 $ �– A Key Management Architecture
for SCADA Systems”, Fourth Australasian Information
Security Workshop (AISW-NetSec 2006).

[3] Ludovic Piètre-Cambacédès, Pascal Sitbon
“Cryptographic Key Management for SCADA Systems,
Issues and Perspectives”, Proceedings of the 2008
International Conference on Information Security and
Assurance (isa 2008) Pages 156-161.

[4] Mariana Hentea, “Improving Security for SCADA Control
Systems“, Interdisciplinary Journal of Information,
Knowledge, and Management Volume 3, 2008.

[5] Mingyan Li, R. Poovendran and C. Berenstein “Design of
Secure Multicast Key Management Schemes With
Communication Budget Constraint”, IEEE Communications
Letters, Vol. 6, No. 3, March 2002.

[6] Sungjin Lee, Donghyun Choi, Choonsik Park, and
Seungjoo Kim” An Efficient Key Management Scheme for
Secure SCADA Communication”, Proceedings Of World
Academy Of Science, Engineering And Technology Volume
35 November 2008.

[7] Yongge Wang and Bei-Tseng Chu “sSCADA: Securing
SCADA Infrastructure Communications”, August 2004.

[8] http://www.ncs.gov/library/tech_bulletins/2004/tib_04-
1.pdf.

[9] Tanveer Ahmad Zia “A SECURITY FRAMEWORK FOR
WIRELESS SENSOR NETWORKS” PhD Thesis, University
of Sydney, February 2008.

[10] T. Paukatong “SCADA Security: A New Concerning
Issue of an Inhouse EGAT-SCADA”, Electricity Generating
Authority of Thailand, 53 Charan Sanit Wong Rd., Bang
Kruai, Nonthaburi 11130, Thailand.

[11]Barry Charles Ezell “Infrastructure Vulnerability
Assessment Model (IVAM) “, Risk Analysis, Vol. 27, No. 3,
2007.

[12]http://www.digitalbond.com/index.php/category/scada-
protocols.

[13] Joe Weiss PE, CISM “Assuring Industrial Control
System (ICS) Cyber Security”

Fig. 9. Insertion of new CounterKey, when database is partially filled

Fig. 7. Insertion of new CounterKey, when database is fully filled

Fig. 8. Shifting of existing CounterKey within the database, with its
use.

Int. J. of Advanced Networking and Applications 289
Volume: 01, Issue: 05, Pages: 282-289 (2010)

http://www.cooperpower.com/products/protective/idea/pdf/
080827_JW_Cybersecurity.pdf.

[14] American Gas Asociation-Assuring Industrial Control
System (ICS) Cyber Security;
www.waterresearchfoundation.org/research/../2969/AGAPart
1.pdf

[15] Peter Gutmann “PKI: It’s Not Dead, Just Resting”
IEEE Computer, vol. 35, no. 8, pp. 41-49, Aug. 2002.

[16] Benamar Kadri, Mohammed Feham, and Abdallah
M’hamed “Lightweight PKI for WSN µPKI” accepted for
International Journal of Network Security, Vol.10, No.3,
PP.194–200, May 2010.

[17] Carl Ellison “SPKI / SDSI ” October 2004.

[18] http://groups.csail.mit.edu/cis/sdsi.html.

Authors Biography

Anupam Saxena received a B. Tech. degree in
Information Technology from UP Technical
University, Lucknow, India. He started
working as Lecturer in the Institute of
Engineering & Rural Technology, Allahabad,

India from the year 2006; and in 2007 joined C-DAC as a
Project Engineer. He is presently working as Staff Scientist in
the Computer Networks & Internet Engineering (CNIE)
division of C-DAC Mumbai. He is actively involved in the
Network Administration and network security related
research projects and also involved in providing corporate
training in the field of Information security. His present
research interests are in areas of Computer Network, Protocol
Development and Information Security.

Om Pal received a Bachelors Degree (B.E) in
Computer Science and Engineering from Dr. B.
R .Ambedkar University Agra (India), MBA in
Operation Management from Indira Gandhi
National Open University, Maidan Garhi, New
Delhi (India) and pursuing PhD in area of

network security from Indian Institute of Technology (IIT)
Bombay, Mumbai (India). He Joined NTPC (National Thermal
Power Corporation) in 2005 as IT Resource Person. He joined
C-DAC (Centre for Development of Advanced Computing) in
2006 and presently working as Staff Scientist.
His present research interests are in areas of network
security. He is interested in cryptography, key management
schemes and in area of intrusion detection and prevention
system. He has published papers in International Journals
and International Conferences.

Zia Saquib received a Bachelors Degree (B.E)
in Electrical Engineering from Regional
Engineering College- Rourkela, India (Now
NIT-Rourkela) and a M.S. Degree in Electrical
Engineering (Communication Engineering

Stream) from Florida Institute of Technology, USA. He

joined C-DAC in 2002 as Member Technical Staff and was
designated as Group Coordinator and Chairman of the
Management Committee of Advanced Computing Training
School (ACTS) in 2003 and was given responsibility as Head
& Program Coordinator, ACTS and e-Governance Software
Group in 2004.
He is presently Executive Director of C-DAC Mumbai and
Bangalore (Electronic City) Centers. He is also Head of
Computer Networks & Internet Engineering (CNIE),
Biometrics, and Software Engineering (SENG) Research
Groups.
His present research interests are in areas of network
security & biometrics. He is interested in cryptography &
key management schemes as applied to constrained
environments (such as SCADA and Mobile Ad hoc
Networks). In biometrics, his interests are in novel
algorithms, performance evaluation and biometric
cryptosystems. In addition, he is also involved in
development of Network Intrusion Prevention Systems,
Storage Networks and Messaging Middleware for
performance critical e -Government systems.

Dr. Dhiren Patel is currently a Professor of
Computer Science & Engineering at IIT
Gandhinagar, Ahmedabad, India (on leave from
NIT Surat, India). He carries 20 years of
experience in Academics, Research &

Development and Secure ICT Infrastructure Design. His
research interests cover Security and Encryption Systems,
Web Services & Programming, SOA and Cloud Computing,
Digital Identity Management, e-Voting, Advanced Computer
Architecture etc. Besides numerous journal and conference
articles, Prof. Dhiren has authored a book "Information
Security: Theory & Practice" published by Prentice Hall of
India (PHI) in 2008. He is active in Indo-UK, Indo-French,
and Indo-US security research collaborations.

